
The ACIMOV Methodology: Agile and Continuous
Integration for Modular Ontologies and Vocabularies
Fatma-Zohra Hannou1,∗, Victor Charpenay1, Maxime Lefrançois1,
Catherine Roussey2, Antoine Zimmermann1 and Fabien Gandon3

1Mines Saint-Étienne, Univ Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS, Saint-Étienne, France
2MISTEA, INRAE, Place Pierre Viala, Montpellier, France
3Inria, Univ. Cote d’Azur, I3S, CNRS, France

Abstract
This work describes the Agile and Continuous Integration for Modular Ontologies and Vocabularies
(ACIMOV) ontology engineering methodology for developing ontologies and vocabularies. ACIMOV
extends the SAMOD agile methodology to (1) ensure alignment to selected reference ontologies; (2)
plan module development based on dependencies; (3) define ontology modules that can be specialized
for specific domains; (4) empower active collaboration among ontology engineers and domain experts;
(5) enable application developers to select views of the ontology for their specific domain and use case.
ACIMOV adopts the standard git-based approach for coding, leveraging agility and DevOps principles.
It has been designed to be operationalized using collaborative software development platforms such as
Github or Gitlab, and tooled with continuous integration and continuous deployment workflows (CI/CD
workflows) that run syntactic and semantic checks on the repository, specialize modules, generate and
publish the ontology documentation.

Keywords
Modular ontologies, Ontology engineering methodology, Agile method, Git, Continuous Integration and
Continuous Deployment

1. Introduction

As formal and structured representations of knowledge, ontologies are key software assets for
achieving semantic interoperability among complex systems such as Internet of Things (IoT)
applications, industrial control systems, and robotics.
Monolithic ontologies are difficult to maintain, hard to understand and adopt and therefore

serve little to other domains and applications besides those for which they were initially created.
Modularity in ontology design refers to breaking down knowledge into smaller pieces called

2nd Workshop on Modular Knowledge, 9th Joint Ontology Workshops (JOWO 2023), co-located with FOIS 2023, 19-20
July, 2023, Sherbrooke, Québec, Canada
∗Corresponding author.
Envelope-Open fatma-zohra.hannou@emse.fr (F. Hannou); victor.charpenay@emse.fr (V. Charpenay);
maxime.lefrancois@emse.fr (M. Lefrançois); catherine.roussey@inrae.fr (C. Roussey);
antoine.zimmermann@emse.fr (A. Zimmermann); fabien.gandon@inria.fr (F. Gandon)
Orcid 0000-0003-4747-1232 (F. Hannou); 0000-0002-9210-1583 (V. Charpenay); 0000-0001-9814-8991 (M. Lefrançois);
0000-0002-3076-5499 (C. Roussey); 0000-0003-1502-6986 (A. Zimmermann); 0000-0003-0543-1232 (F. Gandon)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:fatma-zohra.hannou@emse.fr
mailto:victor.charpenay@emse.fr
mailto:maxime.lefrancois@emse.fr
mailto:catherine.roussey@inrae.fr
mailto:antoine.zimmermann@emse.fr
mailto:fabien.gandon@inria.fr
https://orcid.org/0000-0003-4747-1232
https://orcid.org/0000-0002-9210-1583
https://orcid.org/0000-0001-9814-8991
https://orcid.org/0000-0002-3076-5499
https://orcid.org/0000-0003-1502-6986
https://orcid.org/0000-0003-0543-1232
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

modules or sub-ontologies. Hence, a modular ontology is constructed as a set of modules by
connecting concepts relevant to the domain or application at hand.

Building an ontology from small modules that can be specialized for different domains brings
understandability and homogeneity to the overall ontology. Modular ontologies based on
such module specializations enable developers of specific applications to create custom views
by selecting the set of required specializations. The underlying knowledge factorization also
streamlines the development process and eases maintainability and resilience, considering that
problems arising within a module are handled in a targeted fashion.
Ontology development methodologies play a determining role in the development of high-

quality ontologies that satisfy application requirements. As ontologies are software resources,
advances in software engineering best practices, such as agility, version control management,
and DevOps, can be transposed to ontology engineering. Ontology engineering literature
has dedicated extensive work to methodologies definition, many of them adapting some agile
methodology. In this paper, we propose to extend existing agile methodologies with git-based
development tools in the case of modular ontologies collaborative design.

Accordingly, the paper proposes an approach to collaboratively develop modular ontologies
for multi-domain applications, by adapting the standard git-based approach for coding.
The rest of this paper is structured as follows. Section 2 introduces the research project

in which this work has been led, and the resulting requirements for the ontology and its
development methodology. Section 3 overviews related work on designing modular IoT domain
ontologies. Section 4 describes the ACIMOV methodology, designed as an extension of the
Simplified Agile Methodology for Ontology Development (SAMOD) [1]. Section 5 describes
how ACIMOV can be operationalized with collaborative software development platforms, and
tooled with scripts.

2. Context and Requirements

The Constrained Semantic Web of Things (CoSWoT) project [2] investigates the exchange of
semantic data and the distribution of semantic reasoning in resource-constrained execution
environments, which are common in the internet of things (IoT) applications. It aims at
providing domain-independent solutions and focuses on two vertical domains: smart buildings
and precision farming. Use cases for the building domain include: (SB1) personalized dashboards
containing aggregated sensor measurements and enabling automatic alerts, (SB2) heating and
window-opening control for optimizing the occupant’s health, comfort, and energy consumption.
Use cases for the precision farming domain include: (PF1) estimate the crop’s growth stages or
weather events based on outdoor air temperature measurements, (PF2) planning watering based
on soil moisture level, crop’s growth stage, and rainfall measurements, (PF3) speed adaptation
of autonomous machines to fields’ moisture measurements.
The knowledge model for the CoSWoT project must hold knowledge common to all IoT

platform components, and knowledge specific to some domain or application. Subsets of the
CoSWoT ontology, or views, will ultimately be embedded in resource-constrained devices for
representing, reasoning, and exchanging sensor data. We summarize the requirements identified
for the CoSWoT ontology as follows:

2



Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

O1 The ontology must align to reference IoT ontologies;
O2 The ontology must be modular, including modules that cover knowledge common to all

IoT platform components;
O3 The ontology must reuse some identified ontologies for the application domains at stake;
O4 The ontology must have a homogeneous and predictable structure, such that similar

concepts for different domains are described the same way;
O5 Different alternative representations must be possible to account for the need to manipu-

late small knowledge graphs in constrained devices;
O6 One must be able to select a subset of the ontology (a view) that covers the needs of a

specific application.

In addition to ontology engineers, various stakeholder profiles are involved in the development
of the CoSWoT ontology: domain experts (DEs) and end-product owners (POs) actively and
continuously collaborate to elicit requirements, develop the ontology, develop applications
that use the ontology, and maintain the ontology. In this context, the ontology development
methodology should fulfill some requirements, to ensure good communication and maximize
the effectiveness and efficiency of the collaborative effort.

M1 Agile principles must be adopted to improve collaboration between ontology engineers,
domain experts, and end-product owners, with short cycles, and working increments;

M2 Regular meetings with all parties must be held to help prioritizing the requirements
stemming from use cases, and choosing the target for the next iteration;

M3 Regular meetings among ontology engineers must be held, to help prioritizing themodules
to work on, and ensuring work on different modules can be led in parallel;

M4 Collaborative software development platforms with code versioning and issue tracking
shall be adopted;

M5 DevOps principles must be adopted to enable continuous integration and deployment of
the ontology artifacts (e.g., ontology modules, documentation, examples)

3. Related Work for Designing Modular IoT Domain Ontologies

3.1. Modular IoT ontologies

Three IoT ontologies can be considered as references from standardization bodies: W3C Thing
Description (TD) [3], OGC&W3C Semantic Sensor Network (SSN) [4], ETSI Smart Applications
Reference ontology (SAREF) [5]. These three ontologies adopt some form of modular design.
TD comes hand-to-hand with the Hypermedia Controls Ontology (HCTL) [6] and the JSON
Schema in RDF vocabulary [7], and relies on separate vocabularies for protocol bindings, such
as for HTTP, COAP, and MQTT [8]. SSN consists of a lightweight core called SOSA (Sensor,
Observation, Sample, and Actuator), a more expressive extension module SSN, a separate
module SSN-Systems for system capabilities, and a set of alignment modules to other ontologies.
SAREF consists of a core ontology SAREF Core, and different extensions for verticals including
SAREF4BLDG and SAREF4AGRI for building and agriculture domains.

3



Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

3.2. Agile ontology engineering methods

Many ontology engineering methodologies have been proposed over time, including METHON-
TOLOGY [9], On-To-Knowledge [10], DILIGENT [11], the “Ontology Development 101” [12],
NeOn [13]. Some directly transpose software engineering methodologies, for example UPON
Lite [14] is based on Rational Unified Process. The LOT methodology [15] adopts a V-model
approach with conditional feedback at upstream development stages. Other early methods pro-
posed to rely and align with existing ontologies to bootstrap new ontologies as in SENSUS [16].
More recently, methodologies are inspired by the principles of Agile software engineering,

which promote collaboration between developers and stakeholders by producing regular updates
of the product1. Among these methods, AMOD [17] and CD-OAM [18] are based on SCRUM.
AMOD is the first method that describes the cycle of ontology development in a SCRUM sprint.
CD-OAM enriches AMOD by describing the management the ontology commitment user
community. XPOD [19] and eXtreme ontology method [20] are based on eXtreme Programming.
The Lean Ontology Development (LOD) [21] is inspired by the Lean approach: Build-Measure-
Learn. SAMOD [1] is revisiting the motivating scenarios and competency questions of Uschold
and Gruninger [22], additionally considering ontology modules and test-driven development.

3.3. Git and CI/CD for ontology engineering

Just as agility aims to improve collaborations between software project customers and developers,
DevOps improves collaborations between developers and IT operations professionals. Jenkins,
Travis CI, Circle CI, Gitlab CI/CD, Github Actions, are all frameworks that allow to specify task
pipelines that will be executed automatically when, for example, a commit is pushed to the
server. Before the democratization of these frameworks, a few preliminary approaches such as
VoCol [23] or OnToology [24] were proposed in the ontology engineering community using
Github applications2. Ontology Development Kit (ODK) [25] uses Travis CI to run workflows
with the ROBOT tool [26] developed by the Open Biological and Biomedical Ontologies (OBO)
community. CI/CD pipelines are reported for the publication of different ontologies, such as the
Financial Industry Business Ontology (FIBO) in [27], the International Data Spaces Information
Model (IDSA) in [28], and the CASE Cyber Ontology3. Specific Github actions are available on
the Github marketplace for running RDFLint4, validating RDF syntaxes5,6, or validating RDF
files against SHACL shapes7 or ShEx [29].

3.4. Positioning the Contributions of the CoSWoT project

Upfront, we have chosen to align the CoSWoT ontology to the three reference IoT ontologies
TD, SSN, SAREF. These ontologies cover partially overlapping requirements and sometimes

1The Manifesto for Agile Software Development lists 12 principles. http://agilemanifesto.org/iso/en/principles.html
2https://docs.github.com/en/developers/apps
3https://github.com/marketplace/actions/case-ontology-validator
4https://github.com/marketplace/actions/setup-rdflint
5https://github.com/marketplace/actions/rdf-syntax-check
6https://github.com/marketplace/actions/validate-rdf-with-jena
7https://github.com/marketplace/actions/validate-shacl

4

http://agilemanifesto.org/iso/en/principles.html
https://docs.github.com/en/developers/apps
https://github.com/marketplace/actions/case-ontology-validator
https://github.com/marketplace/actions/setup-rdflint
https://github.com/marketplace/actions/rdf-syntax-check
https://github.com/marketplace/actions/validate-rdf-with-jena
https://github.com/marketplace/actions/validate-shacl


Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

adopt different modeling choices, which makes fulfilling Requirement O1 a challenging task. In
addition, even in their communities of developers there are sometimes disagreements on how
concepts should be used.8

The SAMOD methodology covers requirementM1. It is an agile method that promotes the
incremental development of the ontology based on the aggregation of small and simple ontology
chunks named modelets, which can be seen as implementations of design pattern. SAMOD
encourages the reuse of existing ontology design patterns when relevant, instead of entire
ontologies. The resulting ontology (current final model in SAMOD) is built incrementally and
sequentially, one modelet by one modelet. SAMOD does not describe how modelets may be
reworked (RequirementM2), nor how their development can be prioritized and led in parallel by
different ontology engineer (RequirementM3). Section 4 describes the ACIMOV methodology
as an extension of SAMOD that covers requirements O1, O2, O5, and M1 to M3.

To the best of our knowledge, the use of SAMOD has only partially been operationalized with
the Github collaborative software development platform and CI/CD workflows, for instance
in the Poliphonia project9, and this aspect has not been published yet (RequirementsM4 and
M5). Section 5 describes how we defined similar pipelines as those used on the FIBO, IDSA and
CASE ontologies, to automate testing and publishing. In addition, it describes how we leverage
DevOps tools to encourage ontology engineers to follow the methodology.

Finally, SAMOD may help covering Requirements O2 and O5 considering each modelet is a
module, but requirements O4 and O6 are not covered. Section 5 describes how the ontology
may consist of modelets that can be specialized for different domains.

4. Description of the ACIMOV Methodology

Figure 1 provides an overview of the seven steps in the ACIMOVmethodology. Themethodology
consists of an outer, longer cycle that involves ontology engineers, domain experts, and end-
product owners, and two inner, shorter cycles dedicated to development activities carried out
by ontology engineers. The steps are:

Step 1 Collect requirements and identify reference ontologies.
Step 2 Review meeting (an event)
Step 3 Select relevant modules from reference ontologies
Step 4 Manage modelet backlog
Step 5 Modelet development meeting (an event)
Step 6 Develop and test modelets
Step 7 Integrate modelet and release ontology artifacts

The rest of this section describes these main steps, events, and artifacts, formalized in
ACIMOV.

8See for example the debate about whether instances of ssn:Property should be specific to some feature of interest,
or generic. [4, Footnote 8] and https://www.w3.org/2015/spatial/wiki/What_is_an_instance_of_ssn:Property.

9https://github.com/polifonia-project/stories

5

http://www.w3.org/ns/ssn/Property
https://www.w3.org/2015/spatial/wiki/What_is_an_instance_of_ssn:Property
https://github.com/polifonia-project/stories


Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

* Prioritize use case requirements

* Validate reference ontologies

* Ensure common global

understanding

* Validate ontology artifacts

3. OE: Select relevant
modules from reference

ontologies

4. OE (asynchronous): 
Manage Modelet Backlog

6. OE (in parallel)
Develop and Test Modelets

7. OE: Integrate Modelet and
Release Ontology Artifacts

endstart

1.a. DE+PO: Collect use
case requirements

1.b. OE: Identify reference
ontologies

2. Review Meeting (all)

5. Modelet Development Meeting (OE)

Extend use cases ?

* Manage modelet backlog (synchronous)
* Validate modelet artifacts

OE

DE

PO

Main cycle

Backlog management cycle

Use case extension cycle

Ontology Engineer

Domain Expert
Product Owner

Figure 1: Overview of the ACIMOV methodology

4.1. Step 1: Collect Requirements and Identify Reference Ontologies

The outer cycle in ACIMOV starts with the collection of use cases requirements and the
identification of reference ontologies. Requirement collection aims to determine the extent of the
knowledge to capture. Domain experts autonomously specify use cases, and end-product owners
define the application scope and how software components will make use of the ontology. In
parallel, ontology engineers identify reference IoT ontologies (Req.O1) and reference ontologies
for the domains at stake (Req. O3). These will facilitate the ontology development process and
improve interoperability and community adoption.

4.2. Step 2: Review Meeting

After Step 1, a review meeting (Req. M2) is organized to specify and prioritize use case require-
ments, validate the selection of reference ontologies, and ensure a common global understanding
of the domain and the end-products. Accordingly, ontology developers formulate a set of com-
petency questions (CQs) that the ontology should be able to answer. An example of CQs for a
module in the CoSWoT project can be found in the project repository 10.
In subsequent development cycles, review meetings are also organized when the current

version of the ontology artifacts is presented, reviewed, and validated with respect to its adequacy
to the use cases and the end-product applications.

10https://gitlab.com/coswot/coswot-samod/-/blob/master/domains/building-automation/evaluation/README.md

6



Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

Ontology artifacts include the set of modules, the ontology and its documentation, validation
reports, and examples.

4.3. Select Relevant Modules from Reference Ontologies

Based on the output of a review meeting, ontology engineers examine how subsets of the
selected reference ontologies may wholly or partially match the requirements, and address
potential modeling discrepancies. In the case of different modeling choices, reconciliation
involves identifying the most suitable to the application at hand or merging complementary
modules to enlarge the set of covered concepts. For example, the IoT ontologies SSN and
SAREF both describe sensor observations/measurements, but with different modeling choices.
Documented ontology design patterns may help to find a common ground or generalization
in case of modeling discrepancies. As an alternative, ontology engineers may conduct a deep
analysis of the reference ontologies, using some upper ontology such as the Dolce-Ultralite
ontology (DUL) [30].
The output of this task is reference ontology modules that will be reused in the ontology

development. Some of them may have the potential of being specialized in different domains.
For example, the sensor class could be specialized as moisture sensor, temperature and relative
humidity sensor, or temperature sensor. Reference ontologymodules keep track of the provenance
to the reference ontology(ies) they are selected from, thus facilitating semantic interoperability
with applications that use these reference ontologies. Selected reference ontology modules for
CoSWoT describe sensors, affordances, quantity kinds, ...The full list can be found on the project
repository.

4.4. Step 4: Manage Modelet Backlog

To address modularity needs (Req. O2), the ontology is designed as a set of stand-alone modules
called modelets, each describing a particular aspect of the ontology and covering a small set of
requirements. Modelets have a loose N-N correspondence with reference ontology modules,
allowing some flexibility and opening up extension tracks.

For requirement O4, modelets are organized and managed in a backlog, with some relations
such as isSpecializationOf, dependsOn, isAlternativeFor, hasHigherPriorityThan.

The coverage of the current list of requirements can be assessed based on the list of modelets
in the backlog. The network of modelets can be analyzed to select the next top-priority ones,
or those on which depend top-priority modelets. As an output of this task, some modelets are
assigned to ontology engineers for the next session of collaborative and parallel development.

4.5. Step 5: Modelet Development Meeting

Part of the backlog management and modelet assignment is done asynchronously through an
issue tracker. In addition, dedicated modelet development meetings among ontology engineers
(OEs) are organized (Req. M3). These meetings are the starting point of the inner cycles in
ACIMOV. In subsequent iterations of the inner cycles, modelet development meetings are when
the current version of themodelet artifacts are presented and reviewed, backlog change requests
are raised and discussed, and modeling choices for dependent modelets are synchronized.

7

https://gitlab.com/coswot/coswot-samod/-/blob/master/domains/building-automation/README.md
https://gitlab.com/coswot/coswot-samod/-/blob/master/domains/building-automation/README.md


Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

4.6. Step 6: Develop and Test Modelets

Each ontology engineer is in charge of developing and testing a modelet’s artifacts.A typical
modelet definition includes the following elements:

Description: motivation statement extracted from use case scenarios of one or more domains.
Competency questions: a list of questions that translate the requirements, and examples of

responses in natural language;
Glossary: optional correspondences to reference ontology modules.
Diagrams: CHOWLK [30] diagram that synthesizes the elements of the modelet. Diagrams

play a central role as they facilitate team discussions.
Ontological description: specification of classes, properties and individuals introduced by

this modelet.
Example: some RDF graph instanciating the modelet for the use case scenarios.
Example SPARQL queries: formalization of competency questions as SPARQL queries, that

may be executed over the examples.
Recommendations: how to best use the modelet in other modelets or applications. This

includes entity naming conventions to improve clarity and consistency.
Scripts: any automated script that can be run to specialize this modelet for different applica-

tions, or check that specializations satisfy the recommendations.

A modelet can be developed from scratch, following a formalization process where the terms
in the requirements are mapped to classes and properties, and use case constraints are mapped
to axioms. Alternatively a modelet can be adapted from an existing one, leveraging:

Generalization. For example, SSN Observation, Sampling, and Actuation, may be generalized
with some new class ProcedureExecution that generically describes the act of executing
some procedure, like observation or actuation.

Specialization. For example, ProcedureExecution can be specialized as ProcedureExecutionOn-
Property, with additional object properties that link to the Property over which the activity
is carried out, and the result. The resulting modelet better covers Observation, Actuation,
and additionally covers forecasts, planned actuations, etc.

Domain-Specific specialization. Top-domain classes or properties can be specialized for
vertical domains (Req.O6). For example FeatureOfInterest may be specialized as Office and
MeetingRoom, but also SoilOfPlot or CropCultivatedInThePlot. Property may be specialized
as IndoorAirTemperature and CarbonDioxideConcentration, but also MoistureLevel and
CropDevelopmentStage.

Alternative. Modelet may introduce alternative modeling choices (Req. O5). For example, as
an alternative to modeling results of procedure executions using the QUDT ontology, one
may introduce datatype properties such as hasSimpleResultInDegreesCelsius to concisely
link an observation to a decimal that encodes its result with the degrees Celsius unit.

Modelet testing requires checking the quality and coherence of the ontological description,
examples of SPARQL queries, and scripts. Modelet validation requires successful testing results
(eg. competency questions), and a decision from the team of ontology engineers during some

8



Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

modelet development meeting. This can be obtained after looping back to Step 4, then a next
session of collaborative and parallel development may be planned.
When a modelet is validated, one may proceed with the modelet integration and release

preparation in Step 7.

4.7. Step 7: Integrate Modelet and Release Ontology Artifacts

Modelets that are validated can be integrated into the global ontology. This requires global
checks such as to ensure the absence of name clashes, and a careful review of dependencies
that link the modelet to other modelets, so as to mention interrelation when appropriate. As
part of this last step, the global ontology documentation can be improved, and the ontology
artifacts can be produced and released, with respect to DevOps best practices (Req. M5).

The ontology engineers may proceed with the management of the modelet backlog (Step 4),
and a modelet development meeting to plan the next session of collaborative and parallel
development. Alternatively, the ontology artifacts may be reviewed and possibly validated by
all the stakeholders during a review meeting, opening up three different possibilities:

Loop to Step 1 if more work is needed by the domain experts and the end-product owners to
extend or refine the set of requirements;

Proceed with Step 3 if a new set of use case requirements is selected to carry on the develop-
ment of the ontology;

End if the ontology is considered done.

5. Operationalization of the ACIMOV Methodology

The ACIMOV methodology aims to be aligned with modern collaborative software development
platforms (Req. M4), such as Github and Gitlab. These platforms provide Git-based code
versioning, integrate project management tools such as issue trackers and Kanban boards, allow
for release hosting, and provide a range of continuous integration and continuous deployment
(CI/CD) features.

Github and Gitlab come with a canonical workflow that drives the way various software
management features are integrated into a single platform. Both workflows11 are themselves
based on the default Git branching workflow12. Git’s versioning model is a directed graph
of changes (additions/deletions of lines of text), also known as commits. A commit can have
multiple children, each materializing a branch, and multiple parents, if some branch is merged
into another one. The default Git workflow is defined upon three kinds of branches:

• main branches, which include stable, successive versions of a code base;
• feature (a.k.a. topic) branches, which branch a code base to implement a new feature or
to improve or fix an existing feature;

• development branches, which integrate the content of (potentially conflicting) feature
branches before merging the in-development code base into a main branch.

11https://guides.github.com/introduction/flow/, https://docs.gitlab.com/ee/topics/gitlab_flow.html
12https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows

9

https://guides.github.com/introduction/flow/
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows


Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

ACIMOV naturally aligns with the default Git branching workflow. Modelets are developed
in feature branches in Step 6, and merged into the main branch in Step 7. Several feature
branches may be created and independent modelets can be developed in parallel. The workflow
consists of the following steps:

1. create a new feature branch from the reference main or a development branch
2. commit one or more changes to the feature branch
3. perform unit tests on the feature being implemented or fixed
4. merge feature branch into the development branch
5. perform integration tests
6. merge development branch into main branch

During the methodology Step 6, CI/CD features can be leveraged to automate the execution of
modelet testing during their developement in feature branches. Custom syntactic and semantic
tests are executed before committing to a feature branch or after merging to the main branch.
Their integrated issue tracker is also commonly used to document desired or in-development
features, in that an issue can be tied to a specifc feature branch: once the issue is created, a
branch is also created and once the branch is merged, the issue is closed. The application of
the default Git workflow to ontology engineering is straightforward, once a correspondence to
topics or features has been found. Our methodology stipulates that changes in the ontology are
performed per modelet. Creating a newmodelet should thus be performed in a dedicated feature
branch. The “modelet branch” should in turn only be merged if the competency questions of
the modelet are fully addressed and tested. The content produced in a modelet (formal content
in RDF, OWL, SHACL, SPARQL or other languages, query answers in CSV files, or any other
textual and graphical documentation) should be isolated from the rest of the code base. Upon
merging the created or modified modelet, a continuous integration pipeline compiles it into a
publishable version, along with existing modelets.
A summary of developped and suggested integration scripts is given in Table 1.

Workflow step Script

Step 2

check syntax of README in modelet
check syntax of Turtle files in modelet
check syntax of SPARQL files in modelet
check syntax of CSV files in modelet

Step 4

check that modelet has a title and a description
check that (at least) one term is correctly defined in modelet
check that (at least) one CQ is correctly defined in modelet
evaluate tests in modelet
generate documentation of snapshot

Step 6
check that all terms are introduced in (at least) a modelet
generate and release documentation

Table 1: Automated checks and generation tasks

In addition to integration scripts, the operationalization of the ACIMOVmethodology includes

10



Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

a set of scripts to automate the ontology generation based on modelet integrations (Req. M5).
In CoSWoT, two script types have been defined:

Specialization scripts enable domain experts to derive domain ontologies tailored to specific
application requirements from the core ontology (Req. M1 and O6). This automation is
simplified by the use of YAML files to support domain experts in specifying classes and
properties configuration without extensive coding. An example of a specialization script
and YAML file are available on the project repository.

Consolidation scripts minimize manual efforts to create views of the ontology constructed
from core modelets (Req. O6). Scripts integrate the management of dependencies to
guarantee the validity and consistency of generated views and ensure the integration of
the corresponding annotations and documentation.

6. Conclusion

This paper introduces the ACIMOV ontology development methodology extending SAMOD
by leveraging git-based collaborative development solutions. The methodology is designed for
modular ontologies development with a focus on reusing reference ontology modules. It consists
of seven steps covering two development cycles carried out by ontology engineers for backlog
management and a long collaborative cycle where domain experts and end-product owners feed
the requirements collection and participate in the validation process. The methodology has
been operationalized using Gitlab as a collaborative software development platform, integrating
scripts for automatic domain-driven ontologies generation.
We have several perspectives for this work. First we are reproducing the methodology in

the context of two other projects (HyperAgents13, ACCORD14) which are using Github as their
Ontology project management platform. We plan to use these second experimentations as eval-
uation. Then we intend to provide guidelines, templates, and scripts for the operationalization
of ACIMOV on Gitlab and Github leveraging and specializing all the functionalities they provide
to the case of ontology project management and development.

Acknowledgements

This work has been partly supported by grants from the French research agency (ANR) on
projects CoSWot (ANR-19-CE23-0012) and HyperAgents (ANR-19-CE23-0030), and EU project
ACCORD (Horizon Europe R&I programme grant agreement no. 101056973).

References

[1] S. Peroni, Samod: an agile methodology for the development of ontologies, in: Proceedings
of the 13th OWL: Experiences and Directions Workshop and 5th OWL reasoner evaluation
workshop (OWLED-ORE 2016), 2016, pp. 1–14.

13https://www.hyperagents.org/
14https://accordproject.eu/

11

https://gitlab.com/coswot/coswot-samod/-/tree/master/scripts
https://www.hyperagents.org/
https://accordproject.eu/


Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

[2] F. Antoniazzi, G. Atemezing, F. Badeig, M. Bennara, S. Bernard, P. Champin, J. Chanet,
C. Gravier, Y. Gripay, F. Laforest, M. Lefrançois, L. Médini, L. Moiroux, C. Roussey, S. Servi-
gne, K. Singh, J. Subercaze, A. Zimmermann, Interopérabilité et raisonnement dans le
web sémantique des objets: le projet coswot, in: S. Ferré (Ed.), IC 2020 : 31es Journées
francophones d’Ingénierie des Connaissances (Proceedings of the 31st French Knowledge
Engineering Conference), Angers, France, June 29 - July 3, 2020, 2020, pp. 155–158. URL:
https://hal.archives-ouvertes.fr/IC_2020/hal-02888216.

[3] V. Charpenay, M. Lefrançois, M. Poveda Villalón, S. Käbisch, Thing Description (TD)
Ontology, Editor draft, 10 May 2023, W3C Working Group draft, W3C, 2023.

[4] A. Haller, K. Janowicz, S. J. Cox, M. Lefrançois, K. Taylor, D. Le Phuoc, J. Lieberman,
R. García-Castro, R. Atkinson, C. Stadler, The sosa/ssn ontology: a joint w3c and ogc
standard specifying the semantics of sensors, observations, actuation, and sampling,
Semantic Web-Interoperability, Usability, Applicability an IOS Press Journal 56 (2019).

[5] R. García-Castro, M. Lefrançois, M. Poveda-Villalón, L. Daniele, The ETSI SAREF ontology
for smart applications: a long path of development and evolution, in: A. Moreno-Munoz,
N. Giacomini (Eds.), Energy Smart Appliances: Applications, Methodologies, and Chal-
lenges, Wiley, 2023.

[6] V. Charpenay, M. Kovatsch, Hypermedia Controls Ontology, Editor draft, 10 May 2023,
W3C Working Group draft, W3C, 2023.

[7] V. Charpenay, M. Lefrançois, M. Poveda Villalón, JSON Schema in RDF, Editor draft, 10
May 2023, W3C Working Group draft, W3C, 2023.

[8] M. Koster, E. Korkan, Web of Things (WoT) Binding Templates, W3C Working Group Note,
30 January 2020, W3C Working Group Note, W3C, 2020.

[9] M. Fernández-López, A. Gómez-Pérez, N. Juristo, Methontology: from ontological art
towards ontological engineering (1997).

[10] S. Staab, R. Studer, H.-P. Schnurr, Y. Sure, Knowledge processes and ontologies, IEEE
Intelligent systems 16 (2001) 26–34.

[11] H. S. Pinto, S. Staab, C. Tempich, Diligent: Towards a fine-grained methodology for
distributed, loosely-controlled and evolving engineering of ontologies, in: ECAI, volume 16,
Citeseer, 2004, p. 393.

[12] N. F. Noy, D. L. McGuinness, et al., Ontology development 101: A guide to creating your
first ontology, 2001.

[13] A. Gómez-Pérez, M. C. Suárez-Figueroa, Neon methodology: scenarios for building
networks of ontologies, in: 16th International Conference on Knowledge Engineering and
Knowledge Management Knowledge Patterns (EKAW 2008). Conference Poster, 2008.

[14] A. De Nicola, M. Missikoff, A lightweight methodology for rapid ontology engineering,
Communications of the ACM 59 (2016) 79–86.

[15] M. Poveda-Villalón, A. Fernández-Izquierdo, M. Fernández-López, R. García-Castro, Lot:
An industrial oriented ontology engineering framework, Engineering Applications of
Artificial Intelligence 111 (2022) 104755.

[16] W. Swartout, R. Patil, K. Knight, T. Russ, Toward distributed use of large-scale ontologies, in:
Proceedings of the 10th Banff Knowledge Acquisition Workshop; Banff, Alberta, Canada;
November 9-14, 1996, 1996, p. 11.

[17] A. S. Abdelghany, N. R. Darwish, H. A. Hefni, An agile methodology for ontology develop-

12

https://hal.archives-ouvertes.fr/IC_2020/hal-02888216


Fatma-Zohra Hannou et al. CEUR Workshop Proceedings 1–13

ment, International Journal of Intelligent Engineering and Systems 12 (2019) 170–181.
[18] A. Takhom, S. Usanavasin, T. Supnithi, P. Boonkwan, A collaborative framework support-

ing ontology development based on agile and scrum model, IEICE TRANSACTIONS on
Information and Systems 103 (2020) 2568–2577.

[19] A. A. Sharifloo, M. Shamsfard, Using agility in ontology construction., in: Formal
Ontologies Meet Industry, volume 174 of Frontiers in Artificial Intelligence and Applications,
IOS Press, 2008, pp. 109–119.

[20] M. Hristozova, L. Sterling, An extreme method for developing lightweight ontologies,
in: In Workshop on Ontologies in Agent Systems, 1st International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Citeseer, 2002.

[21] J. Cummings, D. Stacey, Lean ontology development: An ontology development paradigm
based on continuous innovation., in: Knowledge Engineering and Ontology Development,
2018, pp. 365–372.

[22] M. Uschold, M. Gruninger, Ontologies: principles, methods and applications, The Knowl-
edge Engineering Review 11 (1996) 93–136. doi:10.1017/S0269888900007797 .

[23] L. Halilaj, N. Petersen, I. Grangel-González, C. Lange, S. Auer, G. Coskun, S. Lohmann,
Vocol: An integrated environment to support version-controlled vocabulary development,
in: European Knowledge Acquisition Workshop, Springer, 2016, pp. 303–319.

[24] A. Alobaid, D. Garijo, M. Poveda-Villalón, I. Santana-Perez, A. Fernández-Izquierdo, O. Cor-
cho, Automating ontology engineering support activities with ontoology, Journal of Web
Semantics 57 (2019) 100472.

[25] N. Matentzoglu, C. Mungall, D. Goutte-Gattat, Ontology development kit, 2021. doi:10.
5281/zenodo.6257507 .

[26] R. C. Jackson, J. P. Balhoff, E. Douglass, N. L. Harris, C. J. Mungall, J. A. Overton, Robot: a
tool for automating ontology workflows, BMC bioinformatics 20 (2019) 1–10.

[27] D. Allemang, P. Garbacz, P. Gradzki, E. Kendall, R. Trypuz, An infrastructure for collab-
orative ontology development, lessons learned from developing the financial industry
business ontology (FIBO), in: Formal Ontology in Information Systems, IOS Press, 2022.

[28] S. Bader, J. Pullmann, C. Mader, S. Tramp, C. Quix, A. W. Müller, H. Akyürek, M. Böckmann,
B. T. Imbusch, J. Lipp, et al., The international data spaces information model–an ontology
for sovereign exchange of digital content, in: The Semantic Web–ISWC 2020: 19th
International SemanticWeb Conference, Athens, Greece, November 2–6, 2020, Proceedings,
Part II, Springer, 2020, pp. 176–192.

[29] G. C. Publio, J. E. L. Gayo, G. F. Colunga, P. Menendéz, Ontolo-ci: Continuous data
validation with shex, in: Proceedings of Poster and Demo Track and Workshop Track of
the 18th International Conference on Semantic Systems co-located with 18th International
Conference on Semantic Systems (SEMANTiCS 2022), 2022.

[30] S. Chávez-Feria, R. García-Castro, M. Poveda-Villalón, Chowlk: from uml-based ontology
conceptualizations to owl, in: The Semantic Web: 19th International Conference, ESWC
2022, Hersonissos, Crete, Greece, May 29–June 2, 2022, Proceedings, Springer, 2022, pp.
338–352.

13

http://dx.doi.org/10.1017/S0269888900007797
http://dx.doi.org/10.5281/zenodo.6257507
http://dx.doi.org/10.5281/zenodo.6257507

	1 Introduction
	2 Context and Requirements
	3 Related Work for Designing Modular IoT Domain Ontologies
	3.1 Modular IoT ontologies
	3.2 Agile ontology engineering methods
	3.3 Git and CI/CD for ontology engineering
	3.4 Positioning the Contributions of the CoSWoT project

	4 Description of the ACIMOV Methodology
	4.1 Step 1: Collect Requirements and Identify Reference Ontologies
	4.2 Step 2: Review Meeting
	4.3 Select Relevant Modules from Reference Ontologies
	4.4 Step 4: Manage Modelet Backlog
	4.5 Step 5: Modelet Development Meeting
	4.6 Step 6: Develop and Test Modelets
	4.7 Step 7: Integrate Modelet and Release Ontology Artifacts

	5 Operationalization of the ACIMOV Methodology
	6 Conclusion

